A Boundary Value Problem in the Theory of Plastic Wave Propagation* By
نویسنده
چکیده
In the analysis of boundary value problems in the theory of plasticity, the general situation arises that different partial differential equations are to be satisfied depending on whether the material is in the plastic or elastic state. The criterion determining the state at any material point depends on the dependent variables and their derivatives with respect to time. Thus the regions of application of the different differential equations must be determined from the boundary and initial conditions as the solution is developed. The theory of the propagation of plastic waves in one dimension is a case in which the solution, including the determination of the unknown plastic-elastic boundaries, can be treated. An example is presented in this paper which illustrates the many types of boundary determination conditions which must be used. The method is based on the numerical integration along the characteristics of the hyperbolic equations arising, one linear and one quasi-linear. The development is possible since forward integration along characteristics enables the unknown boundaries to be determined independently of the subsequent solution. This situation is contrasted with other problems in the theory of plasticity. The complexity of the procedure indicates the difficulty to be anticipated with analytical treatment of such problems, and with the numerical treatment of problems involving more extensive plastic flow.
منابع مشابه
Wave Propagation in Generalized Thermodiffusion Elastic Medium with Impedence Boundary Condition
In the present investigation, we study the reflection of plane waves, that is, Longitudinal displacement wave(P-Wave), Thermal wave(T-Wave) and Mass Diffusive wave(MD-Wave) in thermodiffusion elastic-half medium which is subjected to impedence boundary condition in context of one relaxatioon time theory given by Lord and Shulman theory (L-S) and the Coupled theory (C-T) of thermoelasticity. The...
متن کاملProblem of Rayleigh Wave Propagation in Thermoelastic Diffusion
In this work, the problem of Rayleigh wave propagation is considered in the context of the theory of thermoelastic diffusion. The formulation is applied to a homogeneous isotropic thermoelastic half space with mass diffusion at the stress free, isothermal, isoconcentrated boundary. Using the potential functions and harmonic wave solution, three coupled dilatational waves and a shear wave is obt...
متن کاملExact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint
In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus, it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing quation of nanoro...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملFree vibration and buckling analysis of third-order shear deformation plate theory using exact wave propagation approach
In this paper, wave propagation approach is used to analysis the free vibration and buckling analysis of the thick rectangular plates based on higher order shear deformation plate theory. From wave viewpoint, vibrations can be considered as traveling waves along structures. Waves propagate in a waveguide and reflect at the boundaries. It is assumed that the plate has two opposite edge simply su...
متن کاملVariational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory
The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...
متن کامل